
The Marchenko-Pastur Distribution:

From Understanding to Application

Elias Little

December 11, 2020

Overview

In this paper, my goal is to introduce the basics of what actually comprises

random matrices, what we can learn about certain matrices, and then from

there move into numerical analysis and application of the concepts that I will

introduce in the first half. Additionally, for all of the graphs and numerical

analysis, I will either include the code within the page if it’s relevant or refer

to the appendix where the remainder of the code will be. All of the code was

written in Julia.1

1One of the best languages

1



1 What Even Is a Random Matrix?

A random matrix isn’t all that complicated, it’s simply a matrix where each

element is a random variable. Taken at face value, it doesn’t sound all that

special, but what it now allows us to do is combine ideas and tools from

statistics and probability, with those from other fields that use deterministic

matrices, primarily linear algebra. Statistics allows us to model and analyze

non-determinant systems such as a coin toss, or usage of public transporta-

tion throughout the day. Random variables are the specific object that is

the gateway to statistics. Linear algebra on the other hand gives us a frame-

work for working with lots of information, often in many dimensions, and

being able to operate and analyze that information. Vectors and matrices

are the primary objects used in linear algebra and are what power its capa-

bilities. Thus, when we can combine the two we now have a framework for

dealing with lots of multi-dimensional random variables, and can do so easily

with the use of random matrices, the gateway to this new framework, called

Random Matrix Theory [3].

1.1 Wigner’s Semi-Circle Law

One of the most important aspects of linear algebra is the use of eigenval-

ues and eigenvectors. These are used every day from computer graphics to

signal-processing, to stress analysis, and understanding quantum mechanics.

In many of these situations, the eigenvalues of a matrix are one of the most

2



important tools for understanding. For example, they are used in the Fourier

transform which uses eigenvalues to decompose a signal into its constituent

frequencies. So, a logical question to ask would be asking what the eigen-

values of different random matrices look like. We will start by taking two

symmetric random matrices, one where the values are normally distributed,

and the other where the values are uniformly distributed. For each of these,

we calculate the eigenvalues then plot their densities. Doing so results in the

following two graphs 5 6

−2 −1 0 1 2

0.0

0.1

0.2

0.3

Eigenvalues

D
en

sit
y

Normal Distribution Eigenvalue Density

−2 −1 0 1 2

0.0

0.1

0.2

0.3

Eigenvalues

D
en

sit
y

Uniform Distribution Eigenvalue Density

As we can see, they both look very similar and happen to both approxi-

mate semi-circles. This is, in essence, Wigner’s semi-circle law, that the dis-

tribution of eigenvalues of (suitably large) random matrices resembles that

of a semi-circle [2]. More technically, the distribution has the probability

density function (PDF) 2
πR2

√
R2 − x2.

As a small aside, although both of the graphs appear to be semi-circles, the

scale and the factor in the PDF tell us otherwise, so really it should be named

Wigner’s Semi-Ellipse Law.

3



1.2 The Marchenko-Pastur Distribution

Now that we’ve seen how eigenvalues of symmetric random matrices are dis-

tributed, we are prepared to look at the Marchenko-Pastur Distribution or

law. The Marchenko-Pastur law was discovered a little over a decade after

Wigner’s law but comes from a similar motivation. Instead of looking at the

distribution of eigenvalues of a symmetric matrix, it looks at the distribution

of eigenvalues of the covariance matrix of a given rectangular matrix. For

example, if we have a matrix X of size T ×N where each element if indepen-

dent and identically distributed with mean zero and variance σ2, then the

law tells us that the covariance matrix C = T−1X ′X has eigenvalues λ that

converge as N → +∞, T → +∞ such that 1 < T
N

< +∞ to the Marchenko-

Pastur PDF:

f(λ) =


T
N

√
(λ+−λ)(λ−λ−)

2πλσ2 if λ ∈ [λ−, λ+]

0 if λ /∈ [λ−, λ+]

where λ+ and λ− are the maximum and minimum expected eigenval-

ues respectively, and are defined as λ± = σ2
(
1±

√
N/T

)2

. This means

that eigenvalues λ ∈ [λ−, λ+] are to be expected from random behavior, but

eigenvalues larger than the range are more likely attributed to the signal and

not random noise.

4



1.3 Principal Component Analysis & Correlation

This law lends itself well to use in Principal Component Analysis (PCA)

because of the relationship between eigenvalues of the covariance matrix and

the singular values used for PCA [1]. Because our covariance matrix C =

T−1X ′X is symmetric, it can be diagonalized as C = V LV T where V is

a matrix of the eigenvectors and L is a diagonal matrix of the eigenvalues

along the diagonal. We can also perform a singular value decomposition on

X, which gives us X = USV T where U is a unitary matrix, and S is a

diagonal matrix of the singular values along the diagonal. It can then easily

be seen that

C = V SUTUSV T ∗ T−1 = V S2V T ∗ T−1

This means that the singular values are the square root of the eigenvalues

of C. So by using the Marchenko-Pastur law, we can filter out random

eigenvalues and thus improve our singular value matrix and our PCA overall.

2 Theoretical Application

Now that we understand what the Marchenko-Pastur distribution is and how

it’s useful, we can visualize how it works. First, we will define a function

mpPDF that will generate the probability density function given the variance

σ2, the ratio of the rectangle q = T
N

, and the number of points to evaluate.

1 function mpPDF(var, q, pts)
2 # Marchenko-Pastur PDF

5



3 # q=T/N
4 eMin,eMax = var*(1-sqrt(1/q))^2, var*(1+sqrt(1/q))^2
5 eVal = range(eMin,stop=eMax,length=pts)
6 pdf = q./(2*pi*var*eVal).*.sqrt((eMax.-eVal).*(eVal.-eMin))
7 return pdf,eVal
8 end

Now we will construct our random matrix X from Normally distributed

values. We then get the eigenvalues and vectors of the correlation matrix of

X. From there we construct the PDF for this matrix and fit a kernel density

estimate to the eigenvalues for graphing.

1 # Random Matrix
2 X=rand(Normal(0,1),10000,1000)
3 # Get the eigenvalues and vectors of the correlation matrix of X
4 eVal0,eVec0 = getPCA(cor(X))
5 # Calculates the theoretical Marchenko-Pastur distribution
6 pdf0,evals0=mpPDF(1.0,size(X)[1]/size(X)[2],1000)
7 # Fits a Kernel Density Estimate to the eigenvalues of the

correlation matrix↪→

8 pdf1,evals1=fitKDE(diag(eVal0),0.01)

The additional functions are defined here: 1 2. We can now see that

the randomly generated matrix does indeed follow the Marchenko-Pastur

distribution as expected. 7

6



0.6 0.8 1.0 1.2 1.4 1.6

0.00

0.25

0.50

0.75

1.00

Pr
ob

()

Marchenko-Pastur Distribution
KDE of Correlation Matrix

But what does it look like when we don’t have a purely random matrix,

but instead have a matrix with a mix of signal and noise? To do this, I

created a matrix with values that were normally distributed, then added

uniformly distributed noise:

1 function getRandCov(nCols, nFactors)
2 w = rand(Normal(),nCols,nFactors)
3 # Our signal, we're adding nFactors = 100 number of signal

factors↪→

4 w_cov = w * w' # Covariance of w
5 w_cov += Diagonal(rand(Uniform(),nCols)) # Adding noise to the

matrix↪→

6 return w_cov
7 end
8 alpha, nCols, nFactors, q = 0.995, 1000, 100, 10
9 covar = cov(rand(Normal(), nCols*q,nCols))

10 covar = alpha*covar+(1-alpha)*getRandCov(nCols,nFactors)
11 corr0 = cov2corr(covar)
12 eVal01, eVec01=getPCA(corr0)

This time I also used a bar graph so we can see the individual eigenvalues

compared to just their estimated PDF. 8

7



0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

Pr
ob

()

Marchenko-Pastur Distribution
KDE of Correlation Matrix

This shows clearly how the Marchenko-Pastur distribution captures all

of the eigenvalues related to random noise while the eigenvalues relating to

the signal are untouched. From here we can define a function that essen-

tially filters out the eigenvalues that are captured by the Marchenko-Pastur

distribution returning a denoised correlation matrix [4]. In order to do so

we correct the set of eigenvalues by setting all non-important eigenvalues

λj =
1

N−i

∑N
k=i+1 λk, j = i+ 1, ..., N . This preserves the trace of the correla-

tion matrix while significantly reducing the importance of these eigenvalues.

The corrected set of eigenvalues Λ can then be used to create the denoised

covariance matrix as we did before:

C = V ΛV T

The functions to accomplish this can be found at 3 4

8



3 Application to Real Data

We have now seen that the Marchenko-Pastur law does indeed work with

data that is generated to our specification, but how about if we use real-life

data? I took stock return data from 470 companies over 5 years between

2013 and 2018 11, 10 and tried to apply the same techniques. Plotting the

real distribution of eigenvalues against the best fit Marchenko-Pastur PDF

resulted in this graph 9:

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

Pr
ob

()

Marchenko-Pastur Distribution
KDE of Correlation Matrix

Here we can see that the distribution of eigenvalues of the real data is

not nearly as nice and conforming as compared to the generated data. And

although the Marchenko-Pastur distribution doesn’t fit particularly well to

the data, it does capture some noise, and it appears that with some work

transforming the data correctly it could capture much more noise than it

presently does. So even though it’s not nearly as nice or clear-cut as the

generated case, we can still see that with real-life data which is very messy,

this technique still has merit in eliminating random noise.

9



4 Moving Forward

Moving forward with this project I want to try and get better results from

real data. In addition, I want to work with other datasets, not just stock

market data, but see how this technique 2 applies to other areas outside of

finance.

If this technique is capable of drastically reducing noise from real data,

I then hope to move to the next step of actually constructing portfolios and

trading strategies from the results and backtest them to see how they would

have performed. Essentially testing how strong the recovered signal is.

References

[1] amoeba (https://stats.stackexchange.com/users/28666/amoeba), Relationship between

svd and pca. how to use svd to perform pca?, 2015. URL:https://stats.stackex-

change.com/q/134283 (version: 2020-06-11).

[2] Jim Gatheral, Random matrix theory and covariance estimation, Merrill Lynch, 2008.

[3] Giacomo Livan, Marcel Novaes, and Pierpaolo Vivo, Introduction to random matrices,

SpringerBriefs in Mathematical Physics (2018).

[4] Marcos M. López de Prado, Machine learning for asset managers, Elements in Quan-

titative Finance, Cambridge University Press, 2020.

2Which is almost always talked about for use in a financial context

10



All of the following is a appendix for code used, and is just for the sake

of completeness.

Appendix A Functions Referenced

1 function getPCA(matrix)
2 # Principal Component Analysis
3 # Get eVal, eVec from a Hermitian matrix
4 eVal, eVec = LinearAlgebra.eigen(matrix)
5 indices = sortperm(eVal, rev=true)
6 eVal, eVec = eVal[indices], eVec[:,indices]
7 eVal = Diagonal(eVal)
8 return eVal,eVec
9 end

Function returns eigenvalues and eigenvectors in reverse order

1 function fitKDE(obs,bWidth=0.25,kernel="gaussian", x=nothing)
2 # Fit kernel to a series of observations, and derive the probability

of the observations↪→

3 # x is the array of values on which the fit KDE will be evaluated
4 if x == nothing
5 x = reshape(reverse(unique(obs)),1,:)
6 end
7 if length(size(x)) == 1
8 x = reshape(x,1,:)
9 end

10 k = kerneldensity(obs,xeval=x[:],h=bWidth) #Default is gaussian
11 return k, x[:]
12 end

Function returns kernel density estimate for given observations

11



1 function cov2corr(cov)
2 # Derive the correlation matrix from a covariance matrix
3 std = .sqrt(diag(cov))
4 corr = cov./(std.*std')
5 corr[corr .< -1] .= -1
6 corr[corr .> 1] .= 1
7 corr
8 end

Function converts a covariance matrix into a correlation matrix

1 function denoisedCorr(eVals, W, nFactors) # W is the matrix of
eigenvectors↪→

2 lam = copy(diag(eVals))
3 lam[nFactors:end] .= sum(lam[nFactors:end])/(size(lam)[1]-nFactors)
4 L = Diagonal(lam)
5 cov = W * L * W' # Covariance matrix
6 corr2 = cov2corr(cov) # Correlation matrix
7 end

Function returns a denoised correlation matrix

Appendix B Plots Referenced

1 n = 470
2 M = rand(Normal(0,1),470,470)
3 sym_M = (M+M')/sqrt(2*n) #Create a symmetric matrix
4 histogram(diag(getPCA(sym_M)[1]), bins = 20, normalized=true,

xlabel="Eigenvalues",ylabel="Density",legend=false,title="Normal
Distribution Eigenvalue Density")

↪→

↪→

5 md"Wigner Semi-circle for Normal Distribution"

Generates a Wigner semi-circle distribution from a Normal matrix

12



1 n = 470
2 M = rand(Uniform(0,1),470,470)
3 sym_M = sqrt(12)*(M+M'.-1)/sqrt(2*n) #Create a symmetric matrix
4 histogram(diag(getPCA(sym_M)[1]), bins = 20, normalized=true,

xlabel="Eigenvalues",ylabel="Density",legend=false, title="Uniform
Distribution Eigenvalue Density")

↪→

↪→

5 md"Wigner Semi-circle for Normal Distribution"

Generates a Wigner semi-circle distribution from a Uniform matrix

1 plot(evals0,pdf0,label="Marchenko-Pastur Distribution")
2 plot!(evals1,pdf1,label="KDE of Correlation Matrix")
3 xlabel!("")
4 ylabel!("Prob()")

Generates a mpPDF with KDE of random matrix

1 p1 = plot(reverse(mpPDF(var0,q,1000))...,label="Marchenko-Pastur
Distribution")↪→

2 p2 = bar!(reverse(fitKDE2(diag(eVal01),0.01,evals0))...,label="KDE of
Correlation Matrix",linecolor="sienna2")↪→

3 xlabel!("")
4 ylabel!("Prob()")

Generates a mpPDF with KDE of random matrix with signal

1 Plots.plot(reverse(mpPDF(var,q,1000))...,label="Marchenko-Pastur
Distribution",xlims=(0,2))↪→

2 plot!(reverse(fitKDE2(diag(eVals), 0.01))...,label="KDE of Correlation
Matrix",linecolor="sienna2")↪→

3 xlabel!("")
4 ylabel!("Prob()")

Plots real data with fitted mpPDF

13



Appendix C Real Data Referenced

1 M = Matrix(mainframe)[:, 2:end]
2 # Two small edits that won't change the data much,
3 # and allows us to keep a lot more good data
4 M[442,568] = mean(M[442, 567:2:568])
5 M[361,587] = mean(M[361, 586:2:588])
6 M = convert.(Float64, M)
7 md"`mainframe` code"

Generates and repairs a matrix M from a dataframe mainframe

1 stonks = []
2 for loc in readdir("individual_stocks_5yr",join=true,)[2:end]
3 ticker = match(r"[A-Z]+",loc).match
4 file = CSV.File(loc) |> DataFrame
5 date_returns = select(file, :date, AsTable([:open,:close]) => ByRow(x

-> 100*(x.close - x.open)/x.open) => :returns)↪→

6 date_returns[!, :company] .= ticker
7 push!(stonks, unstack(date_returns, :date, :returns))
8 end
9 fun = x -> length(names(x)) == 1260

10 filtered_stonks = filter(fun, stonks)
11 mainframe = reduce(vcat, filtered_stonks)

Reads data from CSV files and puts it into a DataFrame mainframe

14


	What Even Is a Random Matrix?
	Wigner's Semi-Circle Law
	The Marchenko-Pastur Distribution
	Principal Component Analysis & Correlation

	Theoretical Application
	Application to Real Data
	Moving Forward
	Functions Referenced
	Plots Referenced
	Real Data Referenced

